讲 座

固体催化剂的研究方法

第四章 化学吸附与表面酸性测定(上)

李宣文, 佘励勤

(北京大学 化学与分子工程学院,北京 100871)

多相催化过程是通过基元步骤的循环将反应物分子转 化为反应产物。催化循环包括扩散、化学吸附、表面反应、脱 附和反向扩散五个步骤。由此可见,化学吸附是多相催化过 程中的一个重要环节。而且,反应物分子在催化剂表面上的 吸附,决定着反应物分子被活化的程度以及催化过程的性 质,例如活性和选择性。因此研究反应物分子或探针分子在 催化剂表面上的吸附,对于阐明反应物分子与催化剂表面相 互作用的性质、催化作用的原理以及催化反应的机理具有十 分重要的意义。

化学吸附是一种界面现象,它与催化、腐蚀、粘结等有密 切的关系,对它的研究具有重要的科学和实用价值。多年 来.人们采用多种现代谱学技术并与常规的表征手段相结 合,从分子水平考察化学吸附层的表面结构、吸附态以及分 子与表面作用的能量关系,获得了广泛深入的研究结果,形 成表面科学这一重要的学术领域,化学吸附也就成为重要的 组成部分。

本章将从化学吸附的的基本原理出发, 阐述化学吸附 在多相催化研究中的应用,并用几个实例说明研究化学吸 附应采用哪些方法、注意哪些环节、如何获得确切的化学 吸附的信息,然后着重介绍从化学吸附角度研究表面酸性 的方法。

第一部分 化学吸附

早年,人们用重量法和容量法研究化学吸附。随着科学 技术的进步,各种现代谱学技术已成为研究化学吸附的主要 手段。催化研究工作者通过常规的方法和各种谱学技术研 究化学吸附,用以阐明催化作用原理和催化反应机理。

1 化学吸附与多相催化的关联

在化学吸附与多相催化关联的长期研究中,归纳出两个 经验规则[1]。

- (1) 一个固体物质产生催化活性的必要条件,是至少有 一种反应物在其表面上进行化学吸附。换句话说,一种固体 物质只有当其对反应物分子(至少是一种)具有化学吸附能 力时,才有可能催化其反应。
- (2) 为了获得良好的催化活性,固体表面对反应物分子 的吸附要适当。多相催化需要的是较弱并且快速的化学吸 附。这个规则也可表述为:如果一个反应能被若干固体物催

化,则单位表面上的反应速率,在相同覆盖度时与反应物的 吸附强度成反比。

此规则不仅说明了化学吸附与多相催化间的密切关系、 而且可应用于催化剂的研究与开发。根据化学吸附的试验 结果,可以指明为某一反应选择催化剂活性组份的方向。

2 化学吸附的基本原理

2.1 化学吸附的特征

吸附过程可分为物理吸附与化学吸附两类。气体分子 在固体表面上的物理吸附,其作用力为范氏力,多发生在低 温。范氏力在同类或不同类分子之间普遍存在,因而物理吸 附普遍存在于气体和任何固体表面之间。物理吸附就象气 体凝聚为液体一样,可形成多分子吸附层或凝聚态。基于物 理吸附的普遍性,原则上可用它测定任何固体的比表面积和 孔结构。

化学吸附基于分子与表面之间的化学键力,因此化学吸 附就象化学反应一样,只能在特定的吸附质和吸附剂表面之 间进行。也就是说,化学吸附是选择性的或专一性的。利用 这一点可以测定催化剂活性组份的表面积。例如合成氨催 化剂是多组份的(Fe - K_2O - Al_2O_3),可以利用 N_2 的物理吸 附测定该催化剂的总表面积:利用 CO 的选择性化学吸附测 定 Fe 的表面积:利用 CO₂ 的化学吸附测定 K₂O 的表面积。 这对研究多组份催化剂的活性表面很有意义。

化学吸附又分非活化吸附和活化吸附。非活化吸附不 需要活化能,在低温就能实现。活化吸附需要活化能在较高 的温度下才能实现,并具有较高的吸附热,就象通常的化学 反应一样。由于绝大多数的表面是不均匀的,吸附的活化能 只能对一定的表面覆盖度 而言,这将在下面介绍。

2.2 化学吸附过程的热力学

化学吸附遵循化学热力学的基本规律。吸附是自发进 进行的过程,它应伴有自由焓的降低。另外在吸附时,被吸

【作者简介】李宣文(1933 -),男,山东 省寿光县人,教授。主要研究领域:沸 石分子筛催化裂化、选择加氢脱蜡和 烷基化等酸式催化的基础研究。专 长:沸石分子筛的性能表征。获中国 专利 4 项,发表论文 70 余篇。电话 010 - 62751498 或 62752006。

附物的自由度的数目比吸附前也减少。例如由 n 个原子组 成的理想气体分子,具有三个平动自由度、三个转动自由度、 3 n-6个振动自由度。被吸附在表面上后,就失去全部或部 分平动自由度,其余自由度的数目也减少。因此,由于吸附 的结果,被吸附物的熵也减小。已知

$$Z(\mathbf{吸}) = H(\mathbf{Q}) - T S(\mathbf{Q})$$

由于 $Z(\mathbf{W}) < 0$, $S(\mathbf{W}) < 0$, 所以 $H(\mathbf{W}) < 0$, 吸附过程的 热焓变化是负值。也就是说,吸附是放热过程。每一个吸附 过程都有其特有的吸附热 $q(q = -H(\mathbf{W}))$ 。如果吸附过 程用下式表示

$$A + S = AS$$

S 为表面吸附位, A 为吸附物。则吸附过程的平衡常数可表示为

$$K = \frac{[AS]}{[S][A]}$$

K是吸附平衡常数,[S]为吸附位的表面浓度。

$$Z(\mathbf{W}) = -RT \ln K$$

所以 $K = e^{-Z(\mathbf{W})/RT}$
或者 $K = e^{-S(\mathbf{W})} e^{-H(\mathbf{W})/RT}$
又由于 - $H(\mathbf{W}) = q$,所以

$$K = K_0 \cdot e^{q/RT}$$

此式表明,吸附的平衡常数随温度的升高而减小。也就是 说,随着温度的升高,吸附量减少。

2.3 化学吸附的基本规律 ——三种模型的吸附等温式

吸附平衡可用等温式、等压式或等量式表示。吸附等温 式比较常用,它可由一定的表面和吸附层的模型假定出发, 通过动力学法、统计力学法或热力学法推导出来。

2.3.1 Langmuir 吸附等温式

Langmuir 吸附等温式又称单分子层吸附理论。它是建 立在理想表面和理想吸附层概念的基础上,反映了理想吸附 的规律。Langmuir 在推导公式时做了三个基本假定。

1) 在固体吸附剂表面上有一定数目的吸附位,每个吸 附位只能吸附一个分子或原子:(2)表面上所有吸附位的吸附 能力相同,也就是说在所有吸附位上的吸附热相等;3)被吸 附分子之间无相互作用。

在这种情况下,吸附速率 ν_α可用下式表示

$$v_a = k_a \cdot p \cdot 0$$

也就是说,吸附速率 ν_a 与空白表面所占的分数 。的大小以 及吸附气体的压力 p 成正比。

被吸附分子的解吸速率 火。为

$$v_{\rm d} = k_{\rm d}$$
.

也就是说,解吸速率与被吸附分子的表面覆盖度 成正比。 当达到吸附平衡时,吸附速率 va 与解吸速率 vd 相等

$$k_a p_0 = k_d$$
.

由于

所以
$$\frac{k_a}{k_d} \cdot p = \frac{(k_a / k_d) p}{1 - (k_a / k_d) p}$$

 k_a/k_d 为吸附平衡常数,令其等于 b,于是得

$$=\frac{hp}{1+hp}\tag{1}$$

这就是 Langmuir 理想吸附层的吸附等温式。

如果将 用试验可测定的物理量 - 吸附量 V 和饱和吸 附量 V_m 表示, = V/V_m ,则上述等温线方程可以化为试验 可以测定的线性方程

$$\frac{p}{V} = \frac{1}{hV_m} + \frac{p}{V_m} \tag{1}$$

p 和 V 是可试验测定的,根据试验结果作 $p/V \sim p$ 的图,得 一直线,由斜率求出 V_m ,这就是单分子层饱和吸附量。由它 可得出表面上吸附位的数目,由式(1)的截距,可求出吸附 平衡常数,又称吸附系数 b,它是与吸附热有关的常数。

试验结果服从式(1)、式(1)的吸附,就是在均匀表面上 的单位吸附,即一个分子在一个吸附位上的吸附。其吸附热 不随表面覆盖度变化。

如果吸附过程伴有分子离解(亦包括一个分子与两个吸 附位作用),例如 H2 在金属表面上的吸附,由吸附动力学方 程式,可求出这类吸附的Langmuir公式

$$= \frac{-(hp)^{\frac{1}{2}}}{1 + (hp)^{\frac{1}{2}}} \tag{2}$$

其线性方程为

$$\frac{\sqrt{p}}{V} = \frac{1}{\sqrt{h \cdot V_{\rm m}}} + \frac{\sqrt{p}}{V_{\rm m}} \tag{2}$$

服从这一方程的吸附为双位吸附,一个分子与两个吸附 位作用。

如果一个分子与表面上 n 个吸附位作用,Langmuir 吸 附等温线方程可以用下式表示

$$=\frac{(bp)^{1/n}}{1+(bp)^{1/n}}\tag{3}$$

Langmuir 当初从动力学概念得到的方程式,后来从统计 热力学得到了严格的证明。只要满足上述三条基本假设, Langmuir 公式的规律一定会得到。即使是在比较复杂的吸 附情况下,它仍是吸附过程规律的基础。就象其它理想定律 一样,Langmuir 定律亦带有近似的性质,它反映的是理想吸 附层的概念。

2.3.2 Freundlich 吸附等温式

绝大部分固体表面的性质是不均匀的。在不均匀表面 上的吸附,特别是在低的平衡压力下,Langmuir 吸附等温线 方程不能描述试验结果。在这种情况下应用 Freundlich 从经 验归纳出的等温式有时却相当有效。这一表达式为

$$= cp^{1/n_2} \qquad n_2 > 1 \tag{4}$$

式中 c 和 n_2 为常数,都随温度的升高而减小。

Freundlich 等温式也能用统计热力学方法从理论上推导 出来。在推导中假定固体表面上吸附位的能量分布为吸附 热随覆盖度对数下降的形式,见式(5)。

$$q = - q_{\rm m} \ln \tag{5}$$

式中 4m 为饱和吸附热。

将不均匀表面分成若干小的单元,假定每一个小单元, 都服从 Langmuir 吸附等温式, ni 为 i 型吸附位占总吸附位 的分数,通过 $= n_{i,i}$ 进一步推导可以得出式(6)。

$$= (a_0 p)^{RT/q_{\rm m}} = cp^{1/n_2}$$
 (6)

式(6)中
$$c = a_0^{RT/q_{\rm m}}, n_2 = \frac{q_{\rm m}}{RT}$$

 a_0 和 q_m 为常数, n_2 可理解为与吸附物种之间相互作用有关

的常数。通常情况下,大于1的 n_2 被认为是被吸附分子之 间相互排斥的结果。

Freundlich 吸附等温式的试验表达式为式(7)。

$$\log V = \log V_{\rm m} + \frac{RT}{q_{\rm m}} \log a_0 + \frac{RT}{q_{\rm m}} \log p \tag{7}$$

式(7)中 V 为吸附量, V_m 为单分子层饱和吸附量。由 此式可检验试验结果是否符合 Freundlich 等温式并可求出有 关常数。

验证结果表明,式(6) 常常能在很宽的 值范围内与试 验数据吻合。

2.3.3 Tëmkin 吸附等温式

在推导 Tëmkin 吸附等温式时,假定表面吸附位的能量 分布特征为微分吸附热 q 随覆盖度 的增加线性下降。

即
$$q = q_0(1 - \epsilon) \tag{8}$$

应用 Langmuir 吸附等温式于这种能量分布的表面时, 可以证明在 = 0 和 = 1 之间的中等覆盖度范围内的吸附 等温式为

$$=\frac{RT}{q_0}\ln(A_0 p) \tag{9}$$

式(9)中 $A_0 = a_0 e^{\frac{-4_0}{RT}}$

 q_0 为覆盖度等于零时的微分吸附热,所以 A_0 与覆盖度 无关, a_0 及 为常数。 q 的减小或者是由于表面不均匀性引 起的,或者是均匀表面上被吸附分子之间的排斥力造成的。 按照 Tëmkin 的推导方式,也可以得到同样的数学表达式。

2.4 吸附热随表面覆盖度的变化

上述 2.3 节三个吸附等温式 .反映了表面吸附位的吸附 热随表面覆盖度 变化的三种形式,如图1所示。

图 1 吸附热随表面覆盖度的变化

图 1 中 表示 Langmuir 等温式的情况,吸附热不随表面覆 盖度变化,表面是均匀的;代表 Tëmkin 等温式的情况,吸附 热随表面覆盖度 的增加线性下降; 为 Freundlich 等温式的 情况,吸附热随表面覆盖度 的增大作对数式下降。

吸附热随表面覆盖度的变化,常用作表达吸附位在表面 上的能量分布状况,或者吸附分子与吸附位之间相互作用的 能量关系。吸附热随表面覆盖度的变化是由表面不均匀性 引起的,还是由吸附物种之间相互排斥造成的,常常难得到 确切的证明。不管怎样,把吸附热和催化活性进行关联是研 究多相催化的一条途径。不过,在关联时应注意吸附热的选 择,因为初始吸附热和饱和吸附时的吸附热相差极大。 Gravelle 用量热法研究 CO 在 NiO 上催化氧化的结果表 明[2].反应物分子首先在最活泼的部位上被牢固地吸附(吸 附热高),以致于不能参与反应,而在弱的吸附位上吸附的分 子能量太低,达不到进行反应的活化状态。只有中等活泼 位,即中等覆盖度对应的吸附位才能参加催化反应。

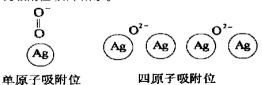
2.5 化学吸附位与分子吸附态

分子在表面上化学吸附时可与表面上的单原子位、双原 子位或若干原子组成的集团成键,而被称为单位吸附、双位 吸附和多位吸附。键合的方式可以是氢键、共价键或离子 键,因而分子在表面上的吸附态是多种多样的。

由于催化剂表面的性质以及反应物分子的性能不同,化 学吸附所需吸附位的数目以及吸附态也不同。CO 在过渡金 属表面上的吸附,可以在单个吸附位上生成线性吸附络合 物,也可能在双吸附位上进行桥式吸附。它们分别属于单位 吸附和双位吸附,如下所示。

单原子吸附位

双原子吸附位


乙烯在过渡金属表面上吸附时,可以在单原子位上通过 键吸附,也可能在双吸附位上进行吸附,其吸附态为

单原子吸附位

双原子吸附位

氧分子在 Ag 表面上以分子态 O2 被吸附时是单位吸 附,但当其在 Ag 表面上进行解离吸附时,形成 O^2_{ads} 吸附态需 要四个电子,而每个 Ag 原子只能提供一个电子,所以要实现 O₂ 分子的离解吸附,需要由四个相邻的表面 Ag 原子组成的 集团作为吸附位,如下所示。

由反应物分子和吸附位之间形成的表面吸附络合物,可 能是表面反应的活化络合物,也可能不是,需要由多种方法 鉴定。但无论如何,由吸附和吸附态的研究结果可得到分子 与表面相互作用的信息。测定吸附位的数目,常由化学吸附 时的化学计量数求出。

在某些情况下,从吸附等温线可以求出组成吸附位的原 子数。由 Langmuir 等温式的推导可以看出,如果是单分子 吸附,即一个分子被吸附在单原子吸附位上,将符合单分子 吸附方程式(1)。

如果发生离解吸附,一个分子被离解为两部分,分别与 相邻的两个金属原子连接。这时吸附位为双原子集团,吸附 作用的表达式将符合式(2)。

由等温线求吸附位原子数的方法,对于单一组份金属表 面可以应用。对多组份吸附剂,由于试验复杂,判断吸附类 型有任意性,实际应用比较困难。

2.6 吸附速率、吸附活化能

化学吸附速度及活化能的测定对催化基础研究和应用 研究都很重要。显然,当吸附为催化反应的限制步骤时,吸 附过程的速度决定着整个催化反应的速度和催化活性。因 此,吸附的活化能和吸附热一样,在一定的条件下可以表征 活性位的性质,区别活性位的类型。

化学吸附有两种主要的类型。一类为非活化的化学吸 附,它在低温时就能实现,其吸附速度非常快,实际上不需要 任何活化能。例如在 Ni、Pt 上, H2 在 - 195 就能很快地进 行吸附。另一类为活化的化学吸附,简称为活化吸附,它需 要在较高的温度下进行。其特点是需要活化能,就象真正的 化学反应一样。

吸附动力学的研究结果表明,吸附活化能往往随表面覆 盖度的增加而增大。例如 H2 在 ZnO - Cr2O3 上的吸附,覆盖 度增加三倍时,吸附的活化能由 12.6~42 kJ/mol 增加到 46.0 kJ/mol。因此,吸附活化能的概念和吸附热一样,是对 一定的覆盖度而言的,其表达式为

$$E_{\rm a} = R T^2 \left(\frac{\partial \ln \nu_{\rm a}}{\partial T} \right) \tag{10}$$

Ea 为吸附活化能。

吸附速率 火。可由吸附量与时间的关系求出,其表达式 有各种类型。在均匀表面上可采用 Langmuir 速率方程式

$$\frac{d}{dt} = bp(1 -)e^{-E_a/RT} - de^{-E_d/RT}$$
 (11)

d / dt 为吸附速率; t 为时间; T 为绝对温度; E_a 和 E_d 分别为吸附和脱附的活化能: b 和 d 分别为吸附和脱附的平 衡常数。

在不均匀表面上,通常采用 Elovich 速率方程式[3]

$$\frac{\mathrm{d}\,V_t}{\mathrm{d}\,t} = ae^{-bV_t} \tag{12}$$

式中 V_t 为时间 t 时的吸附量; a 和 b 为常数。上式的积 分式为

$$V_{t} = (\frac{2.3}{b}) \lg ab + (\frac{2.3}{b}) \lg [t + \frac{1}{ab}]$$
 (13)

如果吸附速率用阿累尼乌斯方程式表示

$$\frac{\mathrm{d} V_t}{\mathrm{d} t} = k_0 \, e^{-\frac{E_d}{R}T}$$

在两个温度 T_1 和 T_2 下测定达到同样吸附量 V_t 时的吸附 速率 $(\frac{dV_t}{dt})_1$ 和 $(\frac{dV_t}{dt})_2$,吸附的活化能 E_a 可由式(14)求出。

$$E_{\rm a} = \frac{2.3 R T_1 T_2}{T_2 - T_1} \lg(t_1/t_2)$$
 (14)

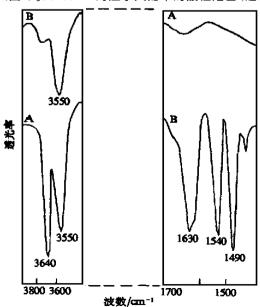
显然,这样的计算是假定在此温度区间内吸附的机理不 会变化。

由于吸附活化能、脱附活化能和吸附热之间有一定的联

系,即 E_d - $E_a = q_0$,因而研究脱附过程也会为吸附过程提供

3 应用化学吸附进行研究中的几个问题

研究化学吸附的方法很多,如吸附量测定法、程序升温 脱附法、量热法、磁学法、红外光谱法、喇曼光谱法、固体核 磁、低能电子衍射、Auger能谱、X光电子能谱、高分辨能量损 失谱、电子显微镜等,都可用来从不同的角度研究化学吸附。 在本讲座中将有系统的介绍,因此有关化学吸附的试验方 法,本文不一一赘述。至于吸附量的测定,常用容量法、重量 法和色谱法。近年来由于自动吸附仪的应用,常规方法的使 用日渐减少,本文不再介绍。对气体吸附量测定感兴趣者, 可从文献[13]找到有关的资料。下面根据化学吸附的性质和 原理,介绍应用化学吸附研究中的几个问题。


3.1 选择适宜的化学吸附试验条件,区分物理吸附与化学 吸附,以便获得确切的化学吸附信息

化学吸附的研究可以提供分子与催化剂表面相互作用 性质的信息。然而,在同一体系进行研究时,使用不同的试 验条件会得到完全不同的结果。这是因为吸附不仅有物理 吸附与化学吸附之分,而且化学吸附又有活化吸附与非活化 吸附之别。一旦将各种吸附混淆,就会掩盖吸附的特征,很 难给出确切的信息。

一般说来,物理吸附发生在低温,化学吸附多发生在高 温,但这不是绝对的。对化学吸附而言,活化吸附多发生在 高温,非活化吸附在低温就能实现。例如 CO 在分子筛上以 及在过渡金属上的化学吸附,在液氮的温度下就能实现。因 此,在进行化学吸附研究时,首先要注意温度的选择,观察在 不同温度下吸附的特性。下面以实例加以证明。

3.1.1 不同温度下吡啶和 NH。在 HY分子筛上的吸附特征 3.1.1.1 吡啶在 200 HY上的吸附

在用红外光谱法研究吡啶在 HY上的吸附时,HY分子 筛呈现两个与酸性羟基有关的吸收带 3640 cm-1 和 3550 cm⁻¹(图2)。3640cm⁻¹对应于大笼中的酸性羟基,这种羟

吸附吡啶前(A)后(B)的红外光谱图 图 2 HY沸石 200

基的酸性较强。3550 cm-1对应于小笼中的酸性羟基,其酸 性较弱。当在 200 吸附吡啶后, 3640 cm⁻¹吸收带消失, 而对应于小笼羟基的 3550 cm 1 吸收带则基本上不受影响。 这表明吡啶吸附具有选择性,但这种选择性是几何形状的 选择性。由于吡啶分子较大,不能通过结构中的六元环进 入小笼与其中的羟基作用,从而使 3550 cm-1吸收带保留下 来。由此可见,用吡啶吸附的红外光谱法,可以判断大笼 与小笼中的酸性中心。此外、吡啶与阳离子配位后、其红 外光谱中也有特征的吸收带,因此利用吡啶吸附的红外光 谱,也可研究阳离子在分子筛的大笼与小笼中的定位以及 移动的状况[4]。

3.1.1.2 室温下吡啶在 HY上的吸附

在室温下吸附吡啶时, HY的红外光谱中的 3640 cm-1 与 3550 cm-1吸收带均被削弱,且 3550 cm-1吸收带显著变 宽,如图 3A 所示。这时发生的是非选择性的吸附,既有物理 吸附的吡啶,如 1440 cm 1吸收带所示,也有质子化的吡啶, 1540 cm 1吸收带的出现可作证明。3550 cm 1吸收带被削 弱以及变宽,可能是由于在 HY大笼内强酸位上质子化的吡 啶,通过骨架氧与方钠石笼的羟基形成氢键的缘故。这种无 选择性的吸附,不能给出 HY表面酸性的有关信息。但将此 室温吸附体系升高温度至 250 ,3550 cm-1吸收带逐渐增 强,而 3640 cm 1吸收带进一步减弱直至完全消失。而表征 质子化吡啶的 1540 cm 1吸收带逐渐增强 ,见图 3B。这说明 在升高温度的过程中, 吡啶由无序吸附变成有序的选择性吸 附。吡啶由弱酸位或非酸位向强酸位转移。与此同时,吡啶 与表面键合的形式,由多数为范氏力或氢键式键合变为离子 键作用,使吡啶在中强酸位上进一步质子化,从而使3640

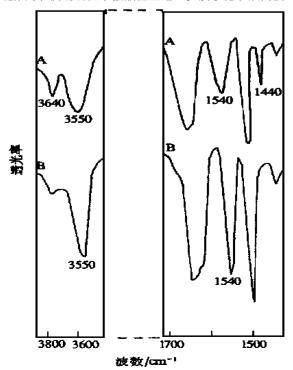


图 3 吡啶在 HY沸石上吸附的红外光谱图 A. 室温吸附;B. 室温吸附后升温至250

cm 1吸收带消失,表征吡啶与质子作用生成的 1540 cm 1吸 收带增强[5,6]。

由此可见, 吡啶在 HY表面吸附时, 温度不同其吸附行 为亦不同,现已证明[7],当用吡啶作探针分子研究表面酸性 时,在 200 时吸附吡啶,可以排除物理吸附的干扰,获得 有关质子酸、路易斯酸以及离子定位的信息。

3.1.1.3 NH3 在 HY上的吸附

气相 NH3 分子碱性比吡啶弱。它与强弱不同的酸位作 用应显示不同的选择性。但当其在 HY上吸附时,无论是在 200 还是在室温,其红外光谱上的 3640 cm⁻¹和 3550 cm⁻¹ 两个吸收带几乎同时消失,并未显示对 3640 cm 1 羟基作用 的选择性[6]。这是由于 NH3 的范德华半径较小,不仅可与 大笼中的 3640 cm-1 羟基作用 .而且可以进入 Y型分子筛的 小笼与 3550 cm⁻¹羟基作用。因此,用 NH₃ 分子吸附的红外 光谱法,既可研究大笼中的酸性羟基和阳离子,又可获得小 笼中羟基和阳离子的信息。

从表面上看,在室温和 200 吸附 NH3 都能使 HY中的 3640 cm⁻¹和 3550 cm⁻¹吸收带消失 .NH₃ 与酸位的作用似乎 无选择性。但在室温吸附 NH3 后的升温过程中,表征 NH4 离子(NH3 的质子化)的 1450 cm 1 吸收带增强 .NH 2 离子的 数目增加。说明室温吸附的氨在升温时由弱酸位向强酸位 移动,导致更多的氨分子质子化。

由吡啶和氨在 HY上吸附的研究表明,这两种分子在不 同温度区间的吸附行为是不同的。一般说来,在200 以上 进行吸附研究,可获得较确切的质子酸、路易斯酸的信息。

3.1.2 不同温度化学吸附的研究可能提供表面反应的信息 由于分子的性质不同,有些分子在表面上的吸附性能不 受温度的影响,有些分子的吸附行为受吸附温度的影响很 大。还有的分子在升温的吸附过程中发生表面反应。在后 一种情况下,不同温度下的吸附研究,可以提供表面反应的 有关信息。下面以环己酮肟在 HZSM - 5 表面上升温吸附的 红外光谱研究为例,说明它在表面上进行的重排反应。

Sato 等[8]研究表明, HZSM - 5 对环己酮肟重排显示良 好的活性和选择性。而且气相重排反应的活性与 ZSM - 5 沸石的外表面的酸量成反比,与沸石的硅铝摩尔比成正比。 当 $n(Si)/n(Al) = 27\,000$ 的 ZSM - 5 表面几乎无酸性时,重 排反应仍有很高的活性和选择性。为探讨该反应的催化作 用原理和反应机理,Sato 等人采用化学吸附 - 红外光谱法研 究了这一反应过程。

催化剂 ZSM - 5 沸石的 n(Si)/n(Al) 为 1640,在其红外 光谱中只有很强的 3740 cm-1吸收带,表面羟基主要以 Si — OH存在,而表征表面酸性的硅铝之间桥氧羟基则未显现出 来,这说明该 ZSM - 5 的酸性很低,如图 4(a) 所示。环己酮 肟在 IR 谱中有很强的 N→OH吸收带 3480 cm ⁻¹。在 25 环己酮肟吸附于上述 ZSM - 5 上时, ZSM - 5 上的 3740 cm 1吸收带完全消失,环己酮肟的 3480 cm 1吸收带削弱, 说明两个羟基之间有相互作用,留下较弱的 C=N振动频率 1662 cm⁻¹。当温度升至 100 时,己内酰胺的羰基吸收带 1637 cm⁻¹出现:继续升温至 250 这一吸收带无变化。这 意味着重排反应在 100 已经完成,进一步升温至 400 时

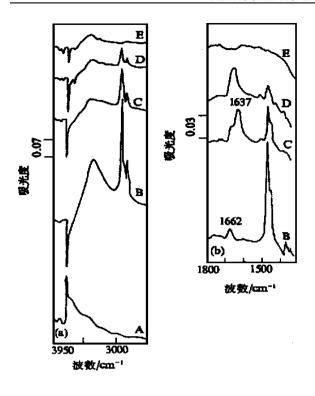


图 4 环己酮肟在 HZSM - 5 (n(Si)/n(Al) = 1640)上吸附的傅利叶红外(FT-IR)谱与温度的关系 A:ZSM-5,B~E:环己酮肟吸附差谱, 真空脱气温度为 500 (A);25 (B); 100 (C);250 (D);400 (E)

此吸收带消失,这可能是己内酰胺脱附离开了 ZSM - 5 的外

由上述试验结果推断,ZSM-5外表面的硅羟基是重排 反应的活性位,反应可能是通过如下过程进行的,首先是环 己酮肟的羟基与 ZSM - 5 外表面的硅羟基作用,形成醚类化 合物,再经重排反应最终形成己内酰胺,如式(15)所示。

显然这只是根据吸附过程的升温研究对反应机理的推 断。欲得确切的概念还需要采用其它方法进行验证。应当 指出,这一机理也不排除酸式催化的可能性,因为在高温下, 例如在 350 ,中性的硅羟基相对于碱性的肟基而言是酸 性。因此,关于此反应机理有待进一步证明。这里引用此 例,只是说明不同温度下化学吸附的研究可能提供的表面反 应的信息。

3.2 研究吸附过程中吸附性能随表面覆盖度的变化

在研究化学吸附与催化之间的关系时,研究吸附性质与 表面覆盖度的关系是非常重要的。为了研究吸附态或吸附 分子与吸附位之间相互作用的能量关系随表面覆盖度的变 化,在吸附时应采用分批进样法。即将被吸附分子分批引入 吸附剂所在的吸附体系中,直至达到饱和吸附。而每批进样 量应小于饱和吸附量,一般要小于饱和吸附量的 1/10。这样 才能获得初始吸附、中间吸附和饱和吸附时的有关信息。下 面我们用两个实例说明。

3.2.1 苯酚在 HY和 HZSM - 5 分子筛上的吸附态随吸附 量的变化

苯酚在 HY和 HZSM - 5 上吸附的研究,对于阐明苯酚 与烯烃(或醇)烷基化的催化作用原理有重要的作用,从而引

起人们的注意。但采用简易的测定饱和吸附方法获得的试 验结果,可能失去得到更确切、更全面信息的机会。例如苯 酚在 HZSM - 5 上的吸附[9],在接近饱和吸附量时,在红外光 谱上出现一个弥散的宽谱,只能给出苯酚与表面形成氢键 的信息。而采用分批进样吸附法[10],每次向吸附体系中引 入少量苯酚,可以获得随吸附量增加,苯酚在表面上吸附态 变化的信息。

如 3.1.1 所述,HY在红外光谱中出现两个与酸性羟基 有关的 3640 cm⁻¹和 3550 cm⁻¹吸收带。它们分别表征大笼 和小笼中的羟基,如图 5(a) 所示。当将一定量的苯酚先后引 入具有 HY样品的红外吸收池中时,引入第1、2份(脉冲)只 使 3640 cm-1 吸收带的强度逐渐减弱,小笼羟基中的 3550 cm-1吸收带则几乎不受影响。苯酚自身的 3657 cm-1吸收 带也消失了,这说明苯酚的羟基优先与 HY 大笼中的 3640 cm⁻¹羟基作用。随着引入苯酚量逐渐增加,3640 cm⁻¹带逐 渐消失,3550 cm-1带逐渐变宽,更显著的是,在第 4 份苯酚 引入吸收池后,表征苯酚二聚态羟基吸收带 3520 cm 1出 现[11]。引入第6份苯酚后,表征苯酚三聚态羟基吸收带的 3475 cm⁻¹也出现了。继续增加苯酚在 HY上的吸附量,在 3600~3300 cm-1区间内,出现一个弥散的宽谱,说明苯酚羟 基与 HY表面羟基之间的氢键合的吸附态形成。由此可见, 随着吸附量的增加,苯酚在 HY表面的吸附态由单个苯酚吸 附态,向二聚、三聚甚至更高聚合度的吸附态变化,式(16)为 苯酚在 HY分子筛上的吸附态。

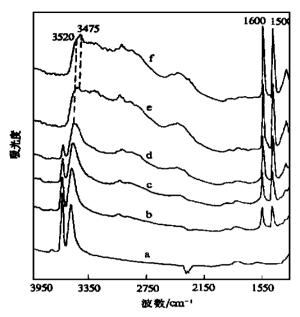
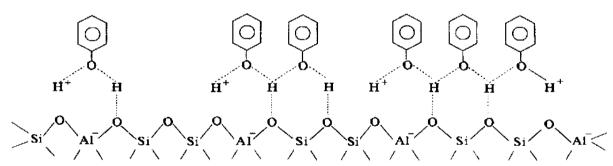



图 5 苯酚在 HY沸石上分批进样吸附的红外光谱 (a) HY;(b) ~ (f) 分别引入 1,2,3,4 和 6 份苯酚

苯酚芳香环的振动光谱 1600 cm⁻¹、1500 cm⁻¹和 1475 cm 1吸收带以及 C - O - H 的面内弯曲振动 1360 cm 1吸 收带的状况,进一步证实了式(16)所示的吸附模型。1600 cm⁻¹、1500 cm⁻¹以及 1475 cm⁻¹吸收带的位置不受吸附作 用的影响,只是它们的吸收强度随吸附量的增加而增加,这 表明苯酚的苯环与 HY表面之间无相互作用,在吸附态中的 苯环垂直干 HY的表面。

苯酚中 C 一 O 一 H 的面内弯曲振动谱在气相中为 1385 cm⁻¹.当在 HY上吸附后位移至 1360 cm⁻¹.这又表明苯酚 的羟基在吸附态时与 HY表面以及其它苯酚的羟基发生了 作用。

综合上述,从吸附量由高到低所得的红外光谱信息,可 以认为苯酚在 HY表面上吸附时,是苯酚的羟基与 HY表面 发生相互作用,而其苯环则垂直于表面。且随吸附量的增 加,苯酚在表面上由单分子吸附态向双聚分子吸附态和三聚 分子吸附态变化。在饱和吸附时变成多分子缔合吸附态,在 200 进行吸附的结果与室温相同。这样的吸附态有利于 正碳离子从苯环的对位进攻,实现烷基化反应的高对位选择 性的催化作用。

3.2.2 CO 的吸附态在低平衡压力下的研究

CO 也是一个适用于研究分子筛的质子酸、路易斯酸和 阳离子定位状况的红外光谱探针分子。CO 是一个具有偶极 的分子,可以通过碳端与金属阳离子形成 给予键,导致 CO 的伸缩振动向高频率位移,从而给出阳离子在分子筛中配位 状态的信息。同苯酚在 HY上的吸附相似,CO 吸附量的多 少对于研究其红外光谱中的精细结构也是非常敏感的。 Knözinger 等[12]在研究 CO 在八面沸石上吸附的红外光谱 时,在很低的CO平衡压力下获得了Y沸石骨架中铝的分布 的信息。

Knözinger 等用 FT - IR 法在 88 K的低温下研究 CO 在 钠型八面沸石上的吸附时发现,在较高的 CO 吸附平衡压力 下(0.1 kPa 至 0.7 kPa) 只观察到强的 2172 cm-1谱带,如图 6(b,c,d,e)所示。2127 cm-1吸收带是 CO 分子通过碳端电 子对与钠离子形成 给予键向高频移动的结果。2124 cm⁻¹ 弱吸收带是¹³CO 与钠阳离子作用生成的。但在 0.05kPa 的 CO 的吸附平衡压力下,发现了 CO 伸缩振动谱的分裂(图 6)。由此可将 Na+ CO 吸附态的图谱分为四种模式的振 动,其频率为 2183 cm⁻¹、2127 cm⁻¹、2166 cm⁻¹和 2157 cm-1,如图 7 所示。

考虑到CO碳端的独对电子的给出电子倾向与Na+的

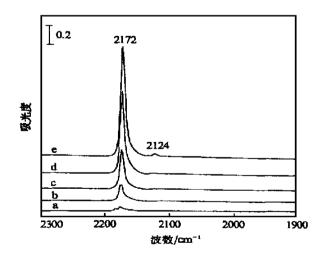


图 6 CO 在 Na Y 沸石上吸附的红外光谱(88 K) (a) 0. 05 kPa; (b) 0. 1 kPa; (c) 0. 3 kPa; (d) 0. 5 kPa; (e) 0. 7 kPa

电场强度有关,而 Na+的电场强度又取决于 Y沸石骨架外阳 离子 S 位邻近六元环中铝的分布。六元环的 Al 愈多,骨架 氧的负电荷也多,它们对 Na+的屏蔽作用使 Na+的电场变 弱。从而使CO碳端接受 电子的倾向变弱。当S 位邻近

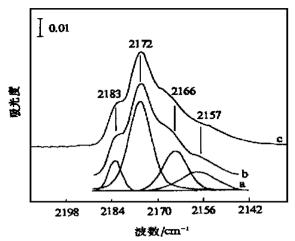


图 7 CO 在 Na Y 吸附的分峰谱(88 K,0.05kPa) (a) 分峰谱;(b) 叠合谱;(c) 0.05 kPa CO 吸附在 Na Y(88 K) 上的 FT - IR 原谱

六元环中 Al 含量少时, Na + 的电场强, 吸附的 CO 分子碳端 给出电子的倾向亦强。由此推断 2183 cm⁻¹高频带是最少被 负电荷屏蔽的 S 上 Na⁺ 离子与 CO 作用后羰基的伸缩振动 谱带,这种S 位邻近的六元环中只有一个Al(图 8d):最低频 率吸收带 2157 cm 1对应于 Na * 离子所在 S 位六元环含有 三个铝原子(图 8a);2172 cm 1和 2166 cm 1可能归属于 CO 配位于含量最多的两种 S 上 Na + 阳离子上产生的吸收带. 这些 S 位六元环中含有两个铝原子,其构型分别为间位和 对位(图 8b.c)。由此可见.从 CO 在钠型八面沸石上吸附后 其伸缩振动谱的分裂,有可能提供沸石骨架六元环中铝分布 的信息,而这种伸缩振动谱的分裂是在低温(88 K)和低的 CO平衡压力下被观察到的。

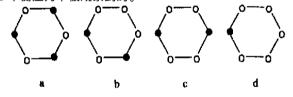


图 8 铝原子在 S 位近邻六元环中的可能分布

3.3 化学吸附法研究催化反应机理的局限性

在《多相催化剂的研究方法》一书中,我们曾经介绍了吸 附动力学法研究乙烯氧化为环氧乙烷的机理[13],并从机理 推断,乙烯氧化为环氧乙烷的选择性最高不超过85.7%。 Bhasin[14]根据后来研究进展,进一步用此例说明化学吸附法 研究催化反应机理的局限性。

由乙烯氧化制环氧乙烷是一个研究得比较深入的催化 反应,目前找到的催化剂活性组份只有金属银,其载体为 Al2O3 或碳化硅。

通过吸附动力学法研究氧气和微量氯在 Ag 催化剂上的 吸附,Sachtler[15]揭示了银催化剂表面四个相邻的 Ag 原子集 团(4Agadi)能离解吸附氧形成 Oads,它是乙烯完全氧化为二 氧化碳的活性位。

$$O_2 + 4Ag_{adj} = 2O_{ads}^{2-} + 4Ag^+$$

$$C_2 H_4 + 6O_{ads}^{2-} - 2CO_2 + 2H_2O$$

而在单个 Ag 原子上能以分子态吸附氧形成 Of ads. 它是乙烯 氧化为环氧乙烷的活性位。

$$O_2 + Ag^0 \longrightarrow O_{2,ads}^2 + Ag^+$$

$$C_2 H_4 + O_{2,ads}^2 \longrightarrow O_{2,ads}^2 + O_{ads}^2$$

试验表明用微量氯吸附在四个相邻的 Agadi上,可以抑制 O₂ 的离解吸附,防止乙烯的完全氧化,使乙烯氧化为环氧乙 烷的选择性高达 70 %以上。于是人们进一步提出乙烯氧化 为环氧乙烷的最高选择性可以到多高?

按照 Sachtler 建议的上述反应机理,抑制 4Agadi的作用 可以提高选择性。但在单 Ag 原子活性位上的非离解吸附的 $O_{2,ads}$ 将乙烯氧化为环氧乙烷后也会形成 O_{ads}^2 ,它仍然可将乙 烯氧化成 CO2。按照上述反应方程式的计量关系: 六个 $O_{2,ads}$ 可将六个乙烯氧化为环氧乙烷,同时生成的六个 O_{ads}^{2} 会 将第7个乙烯氧化为CO。将这些反应加合起来,可以写出 下面的反应方程式。

$$7C_2H_4 + 6O_{2,ads}^{-} - 6 \qquad H_2C CH_2 + 2CO_2 + 2H_2O$$

按照这一机理,乙烯氧化为环氧乙烷的最高选择性为 85.7%

在一段时间,有人将由上述机理推断的选择性最大值, 误认为是选择性的理论最大值,削弱了对开发更优催化剂的 追求。实际上这个机理最高选择性并没有热力学根据,不是 理论最大值。

催化剂开发的实践超过了这一极限,许多专利[16,17]得 到的选择性高达 90 % ~ 95 %。Grant [18] 、Force [19] 等通过表 面科学和基础研究的结果表明:单原子吸附氧可能将乙烯完 全氧化,如果人们设法毒化这些物种,完全可能使乙烯氧化 成环氧乙烷的选择性接近100%。

应当指出,Sachtler 等人用吸附动力学的方法,研究 Ag 催化剂上乙烯氧化成环氧乙烷的活性位和催化反应机理,是 比较深入的。但是用吸附动力学法和多相催化动力学法一 样,所得的反应机理不是唯一的。并且按机理推断的选择性 最大值只是机理选择性,不是理论值。按照开发的更高活性 和选择性的催化剂,可以得出另外的机理,其选择性可达 90 % ~ 95 % .

总之,化学吸附的研究可以提供催化剂表面吸附位、吸 附态和表面催化反应的信息,这对于催化研究很重要。但 是,由此得到的概念和规律性,只是从吸附一个方向得到的, 而催化作用受多方面因素的影响,需要从多方面研究,才能 揭示其全貌和内部规律性。

4 化学吸附研究方法的展望

化学吸附的研究虽有显著的进展,但吸附位、吸附态、吸 附物种与吸附位的键合性质以及吸附过程的动态学仍然是 化学吸附研究的主题。发展精巧的技术与方法并与基础研 究方法相结合,从分子水平上研究吸附位的结构与组成、吸 附态、吸附物种与吸附位的键合关系和吸附过程的动态学是 化学吸附研究的方向。多相催化研究工作者则力求通过化 学吸附与催化活性以及选择性的关联研究,阐明哪些吸附位 是活性位,哪一种吸附态是催化作用的活化态,以便为催化 剂的分子设计奠定科学的基础。

【符号说明】

吸附物 Α 常数 A_0 常数 a常数 a_0 吸附系数 b 常数 c脱附常数 d 吸附活化能 F_{α} 脱附活化能 $E_{\rm d}$ H(吸) 吸附过程热焓变化 吸附平衡常数 K 吸附速率常数 $k_{\rm a}$ 脱附速率常数 $k_{\rm d}$ 吸附位数 n Freudlich 等温式常数 n_2 吸附压力 p 吸附热 q覆盖度趋于零的微分吸附热 q_0 饱和吸附时微分吸附热 $q_{\rm m}$ 阿伏加德罗常数 R 八面沸石超笼中的一种阳离子位 S 吸附过程熵变 S(吸) S 表面吸附位 [S]吸附位的表面浓度

温度 T

时间 吸附量 V

单分子饱和吸附量 $V_{\rm m}$

时间 t 的吸附量 V_t 吸附速率 $v_{\rm a}$

脱附速率 $v_{\rm d}$

Z吸附过程自由焓变化

> 常数 振动频率 表面覆盖度,%

空白表面所占的分数,%

下角标

吸附 a 相邻的 adj 吸附态 ads d 脱附 单元 i

【参考文献】

- [1] 李宣文,黄志渊译.接触催化[M].北京石油工业出版社,1984.
- [2] Gravell P C. [J]. Catal Rev Sci Eng., 1977, 16(1):37 110.
- [3] Aharoni C A, Tompkins F C, Advances in Catalysis vol 21 [C]. New York and London: Academic Press INC, Publishers, 1970, 1
- [4] 李宣文,刘兴云,佘励勒,沸石催化剂开发与红外光谱研究,催 化研究中的原位技术[C]. 北京:北京大学出版社,1993.30-
- [5] 刘冠华. 阳离子对沸石酸性测定的影响[D]. 北京:北京大学化
- [6] Mitani Y, Tsutsumi K, Takahashi H. [J]. Bill Chem Soc Jpn, 1983,56:1917 - 1920.
- [7] Cardona Martinez N , Dumesic J A. Advances in Catalysis vol 38 [C]. New York and London: Academic Press INC. Publishers 1992.175 - 176.
- [8] Sato H. [J]. Catal Rev Sci Eng, 1997, 39(4):395 424.
- [9] Ponomarenko I Y, Paukshtic E A, Koval L M. [J]. Zh Fiz Khim, 1993 **,67** :1726 - 1728.
- [10] Li X W, Su X, Liu X Y. Proceeding 12th International Zeolite Conference [C]. 1998, 4:2659 - 2664.
- [11] Ebata T, Watanobe T, Mikami N. [J]. J Phys Chem, 1995, 99: 5761 - 5764.
- [12] Huber S, Knözinger H. [J]. Appl Catal A: General, 1999, 181: 239 - 244.
- [13] 李宣文, 化学吸附 ——多相催化剂的研究方法[M], 尹元根主 编. 北京:化学工业出版社,1988.75 - 76.
- [14] Bhasin M M. [J]. Catal Lett, 1999, 59:1 7.
- [15] Sachtler W M H. [J]. Catal Rev, 1970, 4:27 36.
- [16] Bhasin M M. Process and Catalysts for the Epoxidation of Ethylene to Ethylene Oxide [P]. US:4908343,1990 - 03 - 13.
- [17] Bhasin M M. Catalyst Composition for Oxidation of Ethylene to Ethylene Oxide [P]. US:5057481,1991 - 10 - 15.
- [18] Grant R B ,Lambert R L . [J] . J Catal , 1985 ,92 :364 375 .
- [19] Force EL, Bell AT. [J]. J Catal, 1976, 44:175 182.

(本章未完待续)